Sains
Malaysiana 54(4)(2025): 1147-1158
http://doi.org/10.17576/jsm-2025-5404-14
Fabricated Germanium-Doped Silica
Optical Fibres: A Novel Dose Meter for Clinical Blood Irradiation
(Gentian Optik Silika Terdop
Germanium: Suatu Meter Dos Baharu untuk Penyinaran Darah Klinikal)
KU SHAIDATON AKMAR KU BAKAR1,
NORAMALIZA MOHD NOOR1,2,* & FARIDAH ISMAIL3
1Medical Physics
Laboratory, Department of Radiology, Faculty of Medicine and Health Sciences, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Medical Physics Unit, Teaching Hospital Universiti Putra Malaysia, 43400
UPM Serdang, Selangor, Malaysia
3Department of Pathology, Faculty of Medicine and Health Sciences,
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Received:
9 September 2024/Accepted: 16 December 2024
Abstract
TA-GVH
disease represents a potential adverse effect associated with blood
transfusions, highlighting the importance of irradiating blood components
within defined limits to effectively mitigate this risk. The recommended
irradiation doses range from 25 to 50 Gy, with a peripheral threshold
established at 15 Gy. This study explores the feasibility of using fabricated
germanium-doped (Ge-doped) silica-based optical fibres as dose indicators
during clinical blood transfusions. Two types of 2.3 mol% Ge-doped optical
fibres were tested: cylindrical (CF) and flat (FF). Calibration was performed
using a Cobalt-60 gamma-ray machine across a dose range of 5 to 50 Gy. Clinical
trials were conducted using a Cesium-137 source blood irradiator. A central
dose of 25 Gy was delivered to real adult blood bags, which were exposed to
gamma rays for 9 min and 56 s. Thermoluminescence (TL) signals from the fibres
were measured with a HarshawTM 3500 TLD reader, and compared with EBT-XD film
and conventional dose indicator stickers. The study found no statistically
significant difference among dosimeters, with a p-value of 0.285 (p > 0.05,
95% Confidence Level) for the 25 Gy dose. Mean errors were 3.4% for CF and 4.3%
for FF when compared to EBT-XD film. These results indicate that Ge-doped
optical fibres offer precise, quantitative measurements of blood irradiation
doses, unlike conventional dose stickers which provide only qualitative visual
indicators. This innovative dosimetry approach shows significant potential as a
cost-effective, reusable, and highly sensitive alternative for clinical blood
irradiation.
Keywords:
Blood irradiation dosimetry; dose indicator; fabricated germanium-doped optical
fibres; thermoluminescence
Abstrak
Penyakit
TA-GVH merupakan kesan sampingan berpotensi berkaitan dengan pemindahan darah,
menekankan kepentingan untuk penyinaran komponen darah dalam had tertentu bagi
mengurangkan risiko ini dengan berkesan. Dos penyinaran yang disyorkan adalah
antara 25 hingga 50 Gy dengan ambang periferal ditetapkan pada 15 Gy. Kajian ini meneroka kemungkinan penggunaan gentian optik
berasaskan silika yang digentikan germanium (terdop Ge) sebagai penunjuk dos
semasa pemindahan darah klinikal. Dua jenis gentian optik 2.3 mol% terdop Ge
telah diuji: silinder (CF) dan rata (FF). Kalibrasi dilakukan menggunakan mesin
sinar gamma Cobalt-60 dalam julat dos dari 5 hingga 50 Gy. Ujian klinikal
dijalankan menggunakan peranti penyinaran darah sumber Cesium-137. Dos pusat
sebanyak 25 Gy diberikan kepada beg darah dewasa sebenar yang terdedah kepada
sinar gamma selama 9 minit dan 56 saat. Isyarat termoluminesens (TL) daripada
gentian diukur dengan pembaca HarshawTM 3500 TLD dan dibandingkan dengan filem
EBT-XD dan pelekat penunjuk dos konvensional. Kajian mendapati tiada perbezaan
yang signifikan secara statistik antara penunjuk dos dengan nilai p 0.285 (p
> 0.05, Tahap Keyakinan 95%) untuk dos 25 Gy. Ralat purata adalah 3.4% untuk
CF dan 4.3% untuk FF berbanding filem EBT-XD. Hasil ini menunjukkan bahawa
gentian optik terdop Ge menyediakan pengukuran dos yang tepat dan kuantitatif
untuk penyinaran darah berbanding dengan pelekat dos konvensional yang hanya
memberikan penunjuk visual kualitatif. Pendekatan dosimetri inovatif ini
menunjukkan potensi yang signifikan sebagai alternatif kos-berkesan, boleh
digunakan semula dan sangat sensitif untuk penggunaan klinikal dalam penyinaran
darah.
Kata
kunci: Dosimetri penyinaran darah; gentian optik terdop germanium; penunjuk
dos; termoluminesens
REFERENCES
Abdullah, N., Mohd Noor, N., Dolah, M.T. &
Sangau, J.K. 2023. Precision and reliability: Calibration coefficients and
long-term stability analysis of radiotherapy dosimeters calibrated by SSDL,
Nuklear Malaysia. Asian Journal of
Medical Technology (AJMedTech) 3(2):
15-32. https://doi.org/https://doi.org/10.32896/ajmedtech.v3n2.15-32
Bakar, K.S.A.K., Noor, N.M., Hassan, M.F.,
Idris, F. & Bradley, D.A. 2023. Dose mapping in Cesium-137 blood irradiator
using novel Ge-doped silica optical fibres in comparison with gafchromic EBT-XD
film: A preliminary study. Radiation
Physics and Chemistry 209:
111010. https://doi.org/https://doi.org/10.1016/j.radphyschem.2023.111010
Begum, M., Rahman, A.K.M.M., Abdul-Rashid,
H.A., Yusoff, Z., Begum, M., Mat-Sharif, K.A., Amin, Y.M. & Bradley, D.A.
2015. Thermoluminescence characteristics of Ge-doped optical fibers with
different dimensions for radiation dosimetry. Applied Radiation and Isotopes 100: 79-83. https://doi.org/10.1016/J.APRADISO.2014.10.025
Bradley, D.A., Hugtenburg, R.P., Nisbet, A.,
Abdul Rahman, A.T., Issa, F., Mohd Noor, N. & Alalawi, A. 2012. Review of
doped silica glass optical fibre: Their TL properties and potential
applications in radiation therapy dosimetry. Applied Radiation and Isotopes 71: 2-11. https://doi.org/10.1016/j.apradiso.2012.02.001
Fadzil, M.S.A. 2020. Use of fabricated germanium-doped optical fibres for beams under
non-reference conditions in selected Malaysian radiotherapy facilities.
PhD Thesis. Serdang: Universiti Putra Malaysia (Unpublished).
Fadzil, M.S.A., Noor, N.M., Tamchek, N. &
Min Ung, N. 2022. Time-temperature profiles effect on thermoluminescence glow
curve formation of germanium doped optical fibres. Sains Malaysiana 51(5):
1557-1566. https://doi.org/10.17576/jsm-2022-5105-23
Fadzil, M.S.A., Ramli, N.N.H., Jusoh, M.A.,
Kadni, T., Bradley, D.A., Ung, N.M., Suhairul, H. & Noor, N.M. 2014.
Dosimetric characteristics of fabricated silica fibre for postal radiotherapy
dose audits. Journal of Physics:
Conference Series 546: 012010.
https://doi.org/10.1088/1742-6596/546/1/012010
García-Garduño, O.A., Lárraga-Gutiérrez, J.M.,
Peña-Jiménez, S. & Gamboa-deBuen, I. 2023. Determination of the absorbed
dose in water for small photon beams using micro-TLDs of LiF:Mg,Ti (Pilot Audit
Proposal). Applied Sciences (Switzerland) 13(7): 4111. https://doi.org/10.3390/app13074111
Grasso, S., Varallo, A., Ricciardi, R.,
Italiano, M.E., Oliviero, C., D’Avino, V., Feoli, C., Ambrosino, F., Pugliese,
M. & Clemente, S. 2023. Absorbed dose evaluation of a blood irradiator with
alanine, TLD-100 and ionization chamber. Applied
Radiation and Isotopes 200:
110981. https://doi.org/10.1016/j.apradiso.2023.110981
Gul, O.V. 2023. In vivo dosimetry in
external beam radiotherapy. In International
Studies in Health Sciences. 1st ed., edited by Gerçeker, F.Ö., Akgül, H.
& Selamoğlu, Z. Serüven Publishing House. pp. 115-128. https://www.seruvenyayinevi.com/Webkontrol/uploads/Fck/healthhaziran2023.pdf#page=115
Hassan, M.F., Rahman, W.N., Akagi, T.,
Sulaiman, N.S., Bradley, D.A. & Noor, N.M. 2023. Thermoluminescence kinetic
parameters of proton-irradiated germanium doped flat-shape optical fibres. Radiation Physics and Chemistry 202: 110521.
https://doi.org/10.1016/J.RADPHYSCHEM.2022.110521
Hassan, M.F., Rahman, W.N.W.A., Kadir, A.B.A.,
Isa, N.M., Tominaga, T., Geso, M., Akasaka, H., Bradley, D.A. & Noor, N.M.
2018. Ge-doped silica fibre proton beam measurements: Thermoluminescence dose-response
and glow curve characteristics. International
Journal of Nanoelectronics and Materials 11: 209-218. https://ijneam.unimap.edu.my/images/PDF
Jacobs, G.P. 1998. A review on the effects of
ionizing radiation on blood and blood components. Radiation Physics and Chemistry 53(5): 511-523. https://doi.org/10.1016/S0969-806X(98)00185-6
Kovačić, A.B., Stanišić, S.
& Zver, S. 2021. Transfusion associated graft vs. host disease and how to
prevent it. Slovenian Medical Journal 90(3-4): 193-201. https://doi.org/10.6016/ZDRAVVESTN.3009
Ku Bakar, K.S.A. 2024. Fabricated germanium-doped
optical fibres for mapping gamma-ray doses in blood irradiator. Thesis.
Serdang: Universiti Putra Malaysia (Unpublished).
Lam, S.E., Bradley, D.A., Mahmud, R.,
Pawanchek, M., Abdul Rashid, H.A. & Mohd Noor, N. 2019. Dosimetric
characteristics of fabricated Ge-doped silica optical fibre for small-field
dosimetry. Results in Physics 12: 816-826.
https://doi.org/10.1016/j.rinp.2018.12.030
Lam, S.E., Alawiah, A., Bradley, D.A. &
Noor, N.M. 2017. Effects of time-temperature profiles on glow curves of
germanium-doped optical fibre. Radiation
Physics and Chemistry 137: 56-61. https://doi.org/10.1016/j.radphyschem.2016.02.023
Lopes, F., Rocha, R.C.G., Munhoz, E., Trigo,
F.C., Feijó, V.B.E.R., Fernandes, M., De Paula, T.C., Padilha Filho, L.G. &
Araujo, G.S. 2023. Quality control in blood irradiation. Brazilian Journal of Radiation Sciences 11(1A): 01-17. https://doi.org/10.15392/2319-0612.2023.2183
MED Alliance Group Inc. 2023. Blood Irradiation Indicators RadTag. MED
Alliance Group, Inc.
https://www.medalliancegroup.com/product/blood-irradiation-indicators-by-radtag/
Mittal, A., Verma, S., Natanasabapathi, G.,
Kumar, P. & Verma, A.K. 2021. Diacetylene-based colorimetric radiation
sensors for the detection and measurement of γ radiation during blood
irradiation. ACS Omega 6(14): 9482-9491.
https://doi.org/10.1021/acsomega.0c06184
Miura, H., Ozawa, S., Hosono, F., Sumida, N.,
Okazue, T., Yamada, K. & Nagata, Y. 2016. Gafchromic EBT-XD film: Dosimetry
characterization in high-dose, volumetric-modulated arc therapy. Journal of Applied Clinical Medical Physics 17(6): 312-322.
https://doi.org/10.1120/jacmp.v17i6.6281
Moroff, G., Leitman, S.F. & Luban, N.L.C.
1997. Principles of blood irradiation, dose validation, and quality control. Transfusion 37(10): 1084-1092.
https://doi.org/10.1046/j.1537-2995.1997.371098016450.x
Ní Loingsigh, S., Flegel, W.A., Hendrickson,
J.E. & Tormey, C.A. 2020. Preventing transfusion-associated
graft-versus-host disease with blood component irradiation: Indispensable
guidance for a deadly disorder. British
Journal of Haematology 191(5):
653-657. https://doi.org/10.1111/bjh.17016
Noor, N.M. 2012. The use of Ge-doped optical fibres in external beam radiotherapy
dosimetry. PhD Thesis. Department of Physics. Surrey: University of
Surrey (Unpublished).
Noor,
N.M., Mohd Roslee, M.A.A., Amirullah, N.A. & Nur Syafinaz Sohini. 2022. Dose mapping of gamma irradiation chamber
(GIC). Asian Journal of Medical
Technology (AJMedTech) 2(1):
49-57. https://doi.org/https://doi.org/10.32896/ajmedtech.v2n1.49-57
Noor, N.M., Fadzil, M.S.A., Ung, N.M., Maah,
M.J., Mahdiraji, G.A., Abdul-Rashid, H.A. & Bradley, D.A. 2016.
Radiotherapy dosimetry and the thermoluminescence characteristics of Ge-doped
fibres of differing germanium dopant concentration and outer diameter. Radiation Physics and Chemistry 126: 56-61.
https://doi.org/10.1016/j.radphyschem.2016.05.001
Noor, N.M., Hussein, M., Kadni, T., Bradley,
D.A. & Nisbet, A. 2014. Characterization of Ge-doped optical fibres for MV
radiotherapy dosimetry. Radiation Physics
and Chemistry 98: 33-41.
https://doi.org/10.1016/j.radphyschem.2013.12.017
Palmer, A.L., Dimitriadis, A., Nisbet, A. &
Clark, C.H. 2015. Evaluation of Gafchromic EBT-XD film, with comparison to EBT3
film, and application in high dose radiotherapy verification. Physics in Medicine & Biology 60(22):
8741-8752. https://doi.org/10.1088/0031-9155/60/22/8741
Patton, G.A. & Skowronski, M.G. 2002.
Implementation of a blood irradiation program at a community cancer center. Transfusion 41(12): 1610-1616.
https://doi.org/https://doi.org/10.1046/j.1537-2995.2001.41121610.x
Rais, N.N.M., Bradley, D.A., Hashim, A., Isa,
N.M., Osman, N.D., Ismail, I., Hassan, H.A. & Noor, N.M. 2021. Fabricated
germanium-doped optical fibres for computed tomography dosimetry: Glow curve
characteristics. Radiation Physics and
Chemistry 178: 108935.
https://doi.org/10.1016/j.radphyschem.2020.108935
Shaz, B.H. & Hillyer, C.D. 2009.
Transfusion associated graft versus host disease. In Transfusion Medicine and Hemostasis, edited by Hillyer, C.D., Shaz, B.H., Zimring, J.C. &
Abshire, T.C. Massachusetts: Academic Press. pp. 345-352. Elsevier. https://doi.org/10.1016/B978-0-12-374432-6.00062-2
Stewart, C., Davies, P. & Vyas, H. 2019. A practical
guide to red blood cell transfusion in children. Paediatrics and Child Health 30(3):
108-113. https://doi.org/10.1016/j.paed.2019.12.005
Wiersum-Osselton, J.C., Slomp, J., Frederik
Falkenburg, J.H., Geltink, T., van Duijnhoven, H.L.P., Netelenbos, T. &
Schipperus, M.R. 2021. Guideline development for prevention of
transfusion-associated graft-versus-host disease: reduction of indications for
irradiated blood components after prestorage leukodepletion of blood
components. British Journal of
Haematology 195(5): 681-688.
https://doi.org/10.1111/bjh.17822
Yilmaz Alan, H., Ünal, G., Atakul, T., Akyürek,
S. & Yücel, H. 2024. A study on quality control check of dose distribution
in blood bags irradiated by 137Cs source blood irradiator by using EBT3
radiochromic film dosimetry. Radiation
Physics and Chemistry 214: 111303.
https://doi.org/10.1016/j.radphyschem.2023.111303
Zakaria, Z., Abdul Aziz, M.Z. & Noor, N.M. 2020.
Thermoluminescence dosimetric characteristics of fabricated germanium (Ge)
doped optical fibres for electron beams dosimetry: A preliminary study. Sains Malaysiana 49(8): 1979-1985. https://doi.org/10.17576/jsm-2020-4908-20
*Corresponding author;
email: noramaliza@upm.edu.my
|